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Abstract

Ongoing activities (Mankba_ et all) are focused

on capturing the sound source in a supersonic jet
through careful LES. One issue that is addressed herein

is the effect of the boundary conditions, both inflow and

outflow, on the predicted flow fluctuations, which rep-
resent the sound source. In this study, we examine the

accuracy of several boundary conditions to determine

their suitability for computations of time-dependent
flows. Various boundary conditions are used to com-

pute the flow field of a laminar axisymmetric jet excited

at the inflow by a disturbance given by the correspond-

ing eigenfunction of the lineaxized stability equations.

We solve the full time dependent Navier-Stokes equa-

tions by a high order numerical scheme. For very small

excitations, the computed growth of the modes closely

corresponds to that predicted by the linear theory. We
then vary the excitation level to see the effect of the

boundary conditions in the nonlinear flow regime.
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1. Basic Scheme

We use a high order extension of MacCormack's

scheme, due to Gott}ieb and Tuxkel 2, to solve the

Navier-Stokes equations. For the two dimensional

Navier-Stokes computations, the operator L in the

equation L Q : S or equivalently Qt + F_ + Gr : S

is split into two one-dimensional operators and the
scheme is applied to these split operators. For the one

dimension model/split equation Qt + F_ : S, we ex-

press the predictor step with forward differences as

and the corrector step with backward differences as

1

Q7+1 = 2[0 + Q?

This scheme is second order in time and becomes

fourth-order accurate in the spatial derivatives when

alternated with symmetric variants 2 3. We define LI
as a one dimensional operator with a forward difference

in the predictor and a backward difference in corrector.

Its symmetric variant L2 uses a backward difference

in predictor and a forward difference in the corrector.



For our computations, the one dimensional sweeps are

arranged as

Q.+I _ LIzLI_Q"

Q.+_ = L2.L_.Q, +I

This scheme is used for the interior points. In order

to advance the scheme near boundaries the fluxes axe

extrapolated outside the domain to artificial points us-

ing a cubic extrapolation to compute the solution on the
boundary. We then solve equation (2.1) to get the solu-

tion at the new time for all boundary points. Hence, in

all one dimensional sweeps, the equations are updated

based on the extrapolated fluxes when necessary. At

the completion of a time step, i.e. a predictor and cot-
rector in both one dimensional sweeps, the boundary

condition is imposed at both inflow, outflow and the

top boundary. For some boundary conditions, at out-

flow, we found it better to include the boundary equa-
tion in all the z sweeps. This will be indicated in the

next section. The singularity at r : 0, is eliminated by

using L'hospital's rule. We have used an axisymmetric
code and also a three dimensional code in axisymmetric

mode for the computations presented in this paper. Ex-

trapolations at the bottom boundary axe used for the
computations with the three dimensional code. The top

boundary is a characteristic boundary and so is treated

differently than the outflow boundary. We extrapolate
three characteristic variables from the interior and set

Pt - pert = 0. For most of:the cases we used zeroth

order extrapolation, but we also considered the effect

of linear extrapolation. In this study we concentrate on
the effect of the outflow boundary condition and, to a

lesser extent, on the inflow boundary treatment.

2. Outflow Boundary Conditions

We base the boundary treatment on the inviscid

equation, even though we solve the viscous equations.
This is reasonable since the viscous effects at inflow and

outflow axe negligible for high Reynolds number flows.
There have been many studies 3 4 5 6 7 8 attempting to

minimize the reflections at the outflow boundary. Our

present study is a continuation of previous works 3 8

The main difficulty occurs for subsonic flows. For su-

personic flows, all the characteristics travel in the flow
direction and boundary points can be calculated from

known quantities at inflow or by extrapolation from
the interior at outflow. For subsonic flow, one acous-

tic wave propagates against the flow direction. One
condition is needed corresponding to this characteris-

tic variable. The simplest approach is to linearise the

equations and to use the one dimensional characteristic
variables normal to the surface. One then specifies the

incoming characteristic variables and extrapolates the

outgoing variables. Characteristic variables can also be

obtained by solving differential equations instead of by

extrapolation. For the acoustic waves one needs differ-
ential equations for l_ 4- pcu,, where u is the velocity

component normal to the boundary. For the shear wave
one needs v,, where v is tangential to the boundary and

finally p_ - c2pt for the entropy variable. In this study,
whenever the boundary condition is not specified but is
free to float then the appropriate characteristic variable

is updated by the partial differential equation (except
when mentioned explicitly). In order to avoid one sided

differences the fluxes are extrapolated outside the do-

main to artificial points using a cubic extrapolation.

Whenever the appropriate combination is specified

we replace this by specifying the combination of the

time derivatives. We can describe this as

Pt -pcu_ = R1

p_ 4- pcu, = R_ (2.1)

p_ - c2p_ = Rs

where R_ is determined by which variables ave specified

and which are not. Whenever, the combination is not

specified, R_ is just those spatial derivatives that come
from the Navier-Stokes equations. Thus, t14 contains

viscous contributions even though the basic format is

based on inviscid characteristic theory. In implement-

ing these differential equations we convert them to con-
servation variables p , m -- p u , n = p v and E. As-

suming an ideal gas we then have

p,= - I)(E,+
u s + v _

Pt --urr_ --vn¢ )
2

m_ up_

P P

nt vpt

P P

For subsonic outflow we calculate R2, Rs,R4 from

the Navier-Stokes equations and set RI as prescribed by

the given boundary condition. For supersonic flows, all

the R_ at the outflow boundary can be calculated from ,
the Navier-Stokes equations or else by extrapolation of

all the characteristic variables from the interior.

2.1.i Sco_t-Hankey condition

Scott and Hankey 9 developed a condition to spec-

ify the incoming characteristic variable at the outflow,
fo, the computation of unsteady flow in a transonic



compressor rotor. Characteristic variables K1 to K4
are defined as

second order, two-dimensional, unsteady outflow con-
dition. The equation for R1 then becomes

K1 - P - u
poo Coo

K2 - P T u
poo coo

Ks = p- P2
Coo

K4 = v

At the outflow boundary K2, Ks and K4 are ex-

trapolated from interior using

OK2
-0

Oz

OKs
-0

Oz

OK4
-0

Oz

K1 is specified at the exit boundary using Pe=_e, uezit,

poo and uoo. pe=_t and ue=_ are imposed in the inviscid

region and their axial derivatives are assumed to be

zero in the viscous region. For this implementation, as

in Scott et al.8, we assume Pe=_t and ue=_t to be 99%
of their inflow values at the small radial locations. For

large raclial locations P_=_t and u_z_t are assumed to

be their values at the immediate interior point in the

axial direction. We do not solve equation (2.1) when
the Seott-Hankey condition is imposed.

2.1.2 One dimensional characteristic condition

The one dimensional nonreflecting (characteristic)

condition is R1 = 0. This condition implies that the
time derivative of the amplitude of the incoming char-

acteristic wave is zero. This case is equivalent to the

nonreflecting condition proposed by Thompson 5. We

have used this condition in previous studies 1 3 10
For this case we found it more accurate to evaluate the

boundary condition within the z sweeps, both predictor

and corrector, rather than at the end of the entire time

step. We refer to this implementation as the Thompson
condition.

2.1.3 Giles' Condition

Giles 6 (and later Kroner 11) added some tangential

space derivatives in the outflow condition. He considers
a wave-like solution of the form

U(z, y, t) = e_(k_+z_-_t)u _

The boundary condition is derived by constructing a
row vector v_ such that r,_U = 0 for each n corre-

sponding to the incoming wave. Here we consider his

p, - pout = -upcv_ - r(py " _-1%) = al

In polar coordinate we implement this as

p, - = - - pc ) =
1" r 7"

This has the advantage of using only tangential deriva-

tives" at the outflow boundary which are discretized by
central differences.

2.1.4 Bayliss- Turkel condition

Based on an asymptotic form of the wave equation

Bayliss and Turkel 7 derived a nonreflecting condition.

They then used a change of variables to consider the
case of a nonzero mean flow. Let d 2 -- =_

where M is the Much number, z, y are the physical

locations of the boundary point relative to some source.

For jet flows this source is taken as the inflow. For other
flows an appropriate center must be chosen. There is no

reason, in general, to measure z and r from the center

of the local coordinate system. Then they got

1 z M

c 1__r____5 [1 - (_)- 1__fi--_]pt

z Y P-Poo --0+(-d )P= + ( )PY + 2d

In three dimensions the inhomogeneous term is di-

vided by d rather than the 2d (see two and three dimen-

sional conditions by Roel2). For cylindrical coordinates

(r, O, z) multiply by -_ and use z = rcos(e), y = rsin(O)
1-

and the definition of d to get

+ cos(e)v= + + 0 (2.1.4)
P poo

m

2r

where

• (e)= v/1-M2"in (e) -Mcos(e)
1- M 2

Hariharan and Hagstrom 13 derived (2.1.4) as a bound-

ary condition and noted its equivalence to the Bayliss-

Turkel condition (see also § 2.1.7). Bayliss and Turkel

then used the momentum equations to get p= and p_
in terms of ut and vt and other spatial derivatives of u

and v. Also assuming that voo = 0 this yields

p, - fCd (U, - + 1 y

c_ - M 2

Jr 2d (P - poo) = 0



For many cases, the domain is much longer than it is

high. Using y < < z we have a simplified form

Pt - pout = -pcuvu = R1

In polar coordinates, we write the above equation as

p, - pcu, = -pcu (rv), _ RI
T

With this simplification we get an equation for the char-
acteristic variable in a form similar to that proposed by

Giles 6 but not identical with his condition. We will re-

fer this condition as the simplified Bayliss-Turkel con-

dition.

We also consider another less simplified form of

Bayliss-Turkel boundary condition. We implemented
this condition in our present a0dsymmetric jet compu-

tations as

-c
Pt -- pout = --pc'tt r d

c
+ -d (v- p o) = R1

In this study, we refer to this condition as the

Bayliss-Turkel condition. The spatial derivatives are

approximated by central differences.

_.1.5 Riemann variables condition

Hagstrom and Hariharan 14 derived a boundary

condition by coupling the incoming and outgoing Rie-

mann variables, al and a2

2c
al = u-k- --

"[--1

2c
a2 = ,t.t -- ---

3'-1

where al corresponds to the outgoing acoustic wave and

a2 corresponds to the incoming acoustic wave. Using

asymptotic analysis in the far field in cylindrical coor-

dinates one gets

2(c- coo)](u = R1
7--_1 )t = 2z 7--1

For this case we found it more accurate to evaluate the

boundary condition within the z sweeps, both predictor

and corrector, rather than at the end of the entire time

step.
Instead of their full condition, we implement a one

dimensional version mad use the above equation to cal-

culate R1. For convenience, we replace the equation for

R2 with
2c

(,, + U _l ), =

It should be noted that this boundary condition was

derived with the assumption that u_o = 0. As z --_ oo,

R1 --_ 0 and this condition reduces to an one dimen-
sional characteristic condition equivalent to the one in

§2.1.2. Since c at the outflow has a profile we choose
the constant coo based on the outflow at the top of the

domain. The poor results for this scheme may be due

to these choices for uoo and coo and because we imple-

mented a truncated version.

_. 1.6 Roe's condition

Roe 12 derived one boundary condition from the

bi-characteristic equations as

(z - flMood)u, + 13_dcoou, + fl2Y[V, + u_v,]

+c_(fld - Moox)vv P - p_
-- "--2poo

where fl = _- M_ and d as defined in §2.1.4. This
condition replaces the equation for R1. For z >> y,

the above equation reduces to

u, + cool(1 + Mzo)u= + vy] = p -- poo
2zpoo(1- Moo)

We further simply this equation by dropping the inho-

mogeneous term to get

u, + coo[(1 + Moo)u, +vu] = 0 (2.1.6)

We implemented this condition and found the solution
near the outflow to be oscillatory. We, then made the

following modification to improve this condition. We

use the energy equation with v = 0

Pt +v,p, + pc:_(uz + v_) = 0

to convert equation (2.1.6) to

Pt - pout = -up= + pc2Mu, : R1

The x derivatives are calculated by one sided differ-

ences. We shall refer to this as Roe's condition.

_.1.7 Convective pressure condition

As pointed out before, Bayliss and Turkel devel-

oped a radiation condition for the wave equation based

on an asymptotic form. This was generalized to the"
convective wave equation by a change of variables.

Bayliss and Turkel boundary condition was derived for
two dimension. Their pressure boundary condition was"

extended to three dimension by Roe 12. Later Hariha-

ran and Hagstrom 13 developed an asymptotic expan-
sion directly for the convective wave equation based on



a Pdemannfunction. Thus, in cylindrical coordinates
(r, 0, z) with R 2=r 2÷z 2

where

R 0)--u-_,
P _ 2-, RJ+*

j=0

U(8) = uoocose+ coo(1-.M2sin8) I12

and M = _-_=. U _s the inverse of s(0) as given in §2.1.4.
This gave them a set of boundary conditions identical to

the complete Bayliss-Turkel conditions and in addition

they were now able to prove uniform convergence to get
improved error estimates. Tam and Webb 15 consid-

ered the linearized guler equations. Using Fourier and

Laplace transforms they independently derived the first

term of the asymptotic expansion for the convective

wave equation. They then derived an outflow boundary

condition based on the far field asymptotic solutions of

the linearized Euler equations. Hence, the approaches

of Bayliss-Turkel, Hariharan-Hagstrom and Tam-Webb

all yield the same equation. This is given in two dimen-

sions by (2.1.4). Whih we have recast the nonrefiect-

ing boundary conditions in characteristic form, Tam

and Webb considered eq. (2.1.4) as an equation for the
pressure and supplemented it by the linearized Euler

equations for the density and the velocities. We have

tried using the characteristic formulation with three di-

mensional extension of equation (2.1.4) [i.e., factor 2r
is replaced by r], but the formulation suggested by Tam

and Webb gave reduced oscillations at the outflow.

In 3-D spherical coordinates,

(R, 8, ¢), this boundary condition is given by

P'+PR + (p-poo)/R = o
U

We next transform from spherical to cylindrical coordi-

nates. Then PR = p, co,(e) + p, sin(O) where ,i,,(0) =

(note this is different than the cylindrical coordinate

0 previously used). In this study, we consider a long
domain with small height i.e. r << z or equivalently

R _ z, sin(e) _ 1. Thus,

lh + (u + c)pz + p- p_ --0
Z

where u isthe axialvelocityatthe outflowboundary. In

thispaper we willreferthisconditionas the simplified

convectivepressure condition.

2.1.8Filtering

Besides nonreflectingboundary conditionsbased

on the partial differential equation there are other ap-

proaches to remove the difficulties associated with far

field boundaries. One such approach was used by Colo-
nius et el.16, who introduced a filter near the outflow.

In this study, we examine the effect of filters for un-
steady ttow calculations. We choose a sixth order filter
of the form

11 15

fi = (1 - a)fi+ a[_f, + -_(fi+l + f_-1)

3 I

+ +

where a = 0 at the beginning of the filter(exit) zone
and increases linearly to i at the outflow boundary.

3. Inflow Boundary Condition

For supersonic flow all characteristic variables

propagate in the flow direction and one can specify all

the flow variables at the inflow. For subsonic flow, one

characteristic variable propagates against the flow di-

rection and it needs to be extrapolated or estimated

from the interior. Other conditions may be specified

by the given inflow conditions. We specified the appro-
priate given inflow boundary conditions as the mean

field plus a constant • times a time varying part based

on the linear spatial stability theory eigenfunctions. If
• is sufficiently small we expect the full Navier-Stokes

equations to behave similar to the linear theory, at least

for small distances from the inflow boundary.

3.1 BCII: EztrapoIate p -- PoCou

In this treatment, we extrapolate one character-

istic variable (corresponding to the out going acoustic

wave) f_om the interior and specify three conditions
based on inflow conditions. We then use these four

conditions to update all quantities at the inflow. In

particular, we extrapolate (p- PoCoU) from interior. We

impose v and calculate (p + pocou) and (p - c_p) from

the given inflow condition, p0 and co are the linearized

density and speed of sound at the inflow.

3.2 BCI2:

In this case the inflow boundary condition is im-
posed using the equation (2.1). We calculate R1 from

the solution of the Navier-Stokes equation at the inflow

and calculate R2-4 from the given inflow condition. We

then solve the above set of equations to get corrected
time derivatives.

3.3 BCI3:

Instead of specifying v as in the previous section
we can specify the normal derivative v,. Since for small

= •e



vz at inflow (z:O) is given by

_z : _Re[V(,)e _']
This boundary condition is weaker in that we supply

derivative information rather than the v component di-

rectly and so v can shift by a function of time. On
the other hand we are supplying additional informa-

tion on the growth rate a which is lacking in the other

boundary conditions. When the linear eigenfunction is
not known one can sometimes specify the vorticity as

suggested by Roe 12.

4. Linear Stability Theory

Linear stability theory is used to compute eigen

functions and the growth rate of disturbance modes.

For completeness of this paper, we will briefly discuss

this theory. The disturbances, which axe governed by
the linesrized Euler equations, are assumed to be spa-

tinily growing and time harmonic with a monochro-

matic frequency. This fo_m of the disturbance in ax-

isymmetric polar coordinates is given by

[_, v, p, p] = [_, _, l_,_]eI(_-_') + complex conjugate

The radian frequency w is a real quantity while the

eigenvalue(a) is a complex quantity. The disturbance
equations can be reduced to a single equation for the

pressure amplitude 17 given by

N2P,., -t- [! - ]P_ - [a2( 1 - M2W) + -- ]P = 0 (4.1)T

where

w = [u- -_]_po
The rest of the disturbance functions are given by

i

o,_- ,_(u - c) P"
1 P

P_- ,_2(U-c)_P"U" U- C

1 P

= -pc_2(U -C)2P "P" + -_

where c is the local speed of sound of the jet for with

c 2 : co2T

As r goes to zero(jet axis) or to infinity (ambient fluid),
W becomes constant. In this case an asymptotic solu-

tion can be obtained in the form

P ~ I_(aJ1 - M'Wt0)r) as r -_ 0.

P ~ g_(_,/i - M_W(oo),') as ," ---' O.

where IN and KN are modified Bessel function of or-

der N. For a given mean flow and a specified frequency,

equation (4.1) is solved by iteration for the complex

eigenvalue a that satisfies the above boundary condi-

tion.

5. Results

We first investigate the effect of the outflow bound-

ary conditions for unsteady jet simulations in axlsym-
metric coordinates (z,r). We excite the flow at the in-

flow with the eigenfunctions of the linearized stability

equations. Because of its importance in sound source
computation, we exaJmine the growth of the pressure
disturbance downstream. We are interested in a super-

sonic jet flowing in a subsonic free stream. We vary
the inflow excitation and see the effect of the boundary

conditions for both the linear and nonlinear regime of

the flow.

We consider a jet with the mean inflow profile

O,= u_,+ (u_- u_)9,

¢,=T_+(T_To)9,+'r-IM:(1-9,)9, (3.1)
2

1
;--r

g, = _[1+ _a_,h(_)]

where 0 is the momentum thickness. The subscripts

c and oo refer to the centerline and free stream values

respectively. At inflow, we assume the radial velocity is
zero and the static pressure is constant. The standard

siT.e of our computational domain is 50 radii in the axial
and 5 radii in the radial directions respectively. We

excite the inflow profile at location r and time t as

u(r,O= _(,')+ _aeCOe"_s'')

PC",0 = PC")+ _ae(-_e"_s'')

pC,',_)= _(,-)+ _Re(,_¢'_s'')

V(r, _)= eRe(Ve i_s,,)

U, V, _ and/5 are the eigenfunctions of the lineaxized

equations with the same mean flow profile. • is the
excitation level, S_ is the Strouhal number. For small •

the growth of the disturbance modes should agree with

that predicted by the linearized Euler equations.
We consider acasewith _ : I_ T__ = i4' Tc _, too-

_ 1

mentum thickness,O : -_ and Strouhal number,St - _.

The jet center Much number is 1.5 while the Reynolds
number based on the jet diameter is 1.2 million. Unless

otherwise mentioned, the axial variation of the distur-

bances correspond to St = _ at the jet edge (r=l).
This also corresponds to the excitation frequency in -

the simulations. Pressure disturbances in this study

are calculated by a discrete Fourier transform in time

aJad so they are functions of z.

.-1

j=O



We examine the effects of the different outflow

conditions presented in §2. We use three values of e,

2.5x10 -4, 2.5x10 -s and 5.0x10 -s and call them low,

moderate and high excitation levels respectively. These

excitation levels were chosen after numerical experi-
ments to show linear, intermediate and nonlinear effects

on the growth of the disturbance. Computations with

low level of disturbances were clone with a 300x120 grid.

Figure 1.1 compares the prediction of the linear theory

with the growth of the pressure disturbance (I/?'J) with
different outflow boundary treatment for these compu-
tations. IPI is the absolute value of the Fourier trams-

form of pressure in time at St = _ along the jet edge
(r=l). Since the disturbance level is low, as expected

computed solutions are close to the prediction of the

linear theory. In Figure 1.2 the spectra of the pressure

disturbance at the outflow boundary is shown. Only
discrete points in x are calculated. They axe connected

by a straight llne only to increase visualization. As

shown in Figure 1.1b numerical solutions slightly oscil-

late and deviate from the prediction of the linear theory.

Deviation from the linear theory could come from the

nonlinear effects. Boundary treatments could lead to

unphysical oscillations, which a high order scheme like
2-4 may retain in the numerical solution.

We next consider computations for • : 2.5x10 -s

with a 225x150 grid. [/_[ and the pressure spectra at

the outflow boundary axe shown in Figures 2.1 and 2.2

respectively. For this e, the boundary condition effects

are more noticeable. We see a significant amount of
excitation of higher harmonics, i.e., nonlinearity in the

spectra of pressure disturbances at the outflow. Ii51

still shows linear growth for this level of excitation.
The Riemann variable condition shows more oscilla-

tions near the outflow than the other conditions. Fi-

nally, we excite the inflow with the high excitation level,
e -- 5x10 -s. We compute the numerical solutions both

in our standard domain (50 radii long and 5 radii high)

and in an extended domain (80 radii long and 5 radii
high). We use a 250x100 grid for the standard do-
main. IPI and the pressure spectra for x=50 are shown

in Figures 3.1 and 3.2 respectively. For this level of

excitation, we observe a decay of pressure oscillations

due to nonlinear effects. Comparisons of tiSI near the
outflow boundary show oscillations for all the bound-

ary treatments. In Figure 4 we consider the same case
but computed in the extended domain with a 400x100

grid. In Figures 3.1 and 4.2, we see oscillations away

from the outflow boundary. Since different outflow
boundary conditions yield essentially identical results

at those locations, such oscillations are not likely due

to the treatments of outflow boundary. In Figure 5.1

we compare the solutions computed in the standard

domain with those from the extended domain. Only

the portion of the domain near the outflow boundary

is displayed. The figures until now have been based

on a zeroth order extrapolation at the upper bound-

ary. We also consider linear extrapolation at the upper

boundary. This resnlts in a higher growth rate down-

stream for all the boundary conditions. Otherwise, the

differences between the various boundary treatments is

the same as before. The convective pressure, Giles and
Thompson conditions were the most accurate near the

outflow boundary. We plot only these in Figure 5.2 for

both zeroth and linear extrapolation with the higher
set of curves representing linear extrapolation.

We next examine the effect of am exit layer. Exit

layer approach was used by Colonius et al.16. In this

study we examine the concept, but use different stretch-

ing and filter. We compute three cases. In the first case,

we used a 300x120 grid for the standard domain and
added 60 grid points in the axial direction. We refer

to this layer (60x120 grid points) as the exit layer. We
used a x l"s stretching in this exit layer. With the exit

layer the computational domain is about 75 radii long

and 5 radii high. In the second case, we added a filter

(eq. (2.1.8)) in the exit layer. In the third case, we

computed the solution in the longer domain but with a
450x120 grid. We refer this solution as the 'no stretch-

ing, no filter' case. We used a low excitation level (e

=2.5x10 -4) for the exit layer study. The comparison
of I/_t is shown in Figure 6.1. We observe pressure os-

cillations introduced by stretching. These oscillations

propagate into the interior from the exit layer. With
filtering these oscillations are reduced. Similar obser-

vations can also be made from the pressure spectra at

x=50 for these three cases as shown in Figure 6.2.

In figure 7.1 we compare the solutions for three in-
flow conditions. For conditions BCI1 and BCI2 there is

an adjustment region of about 4 jet diameters. The so-

lutions downstream are not a_ected by this. Neverthe-

less, we do not expect amy adjustment region since we
are forcing the solution with the linear eigenfunctions.

The width of this adjustment region remains the same

when we refine the grid. Hence, this is not a purely nu-
merical artifact. If we specify the normal derivative of

v as given in BCI3 we considerably reduce this adjust-
ment region but at the expense of increased oscillations

in the domain. The improvement when specifying v_.
may be because we are including the growth rate, c_, in

the boundary condition. We obtained similar results by

enforcing vorticity instead of v at the inflow. In figure
7.2 we compare the solutions for different grids for a su-
personic jet entering a supersonic ambient flow. In this

case all variables are specified at inflow. Nevertheless,
we observe a large scale osciLlation in the solution about



the linear growth rate. This indicates that for super-
sonic flow there are nonlinear effects even at the low

perturbations levels. For all the subsonic/supersonic
cases considered the solutions were given along the jet

edge. Hence, some of the adjustment region may be

physical due to the supersonic flow in the jet.

6. Conclusions

In the tests performed, for a supersonic jet flow

entering a subsonic ambient media, the best outflow

boundary condition seems to be the convective pres-
sure condition. Solutions near the outflow were less

oscillatory when the boundary condition was supple-

mented by the linearized Euler equations as suggested

by Tam and Webb instead of using the characteristic
formulation. The simplifications introduced by Bayliss

and Tuzkel when they derived their final condition re-

duces the accuracy. The boundary condition suggested

by Giles was comparable to that of the convective pres-
sure condition. These boundary conditions were imple-

mented after a complete time step with all intermediate

steps using third order extrapolation of the fluxes. Us-

ing the differential equations based on one dimensional
characteristics was equally good if this was incorpo-

rated in all the z sweeps and not just done at the end

of the entire time step. All these conditions closely

followed the long domain solution except for small os-

ciUations in the final ten percent of the domain. Hence,

one should add about ten percent beyond the domain of

interest and then any of these conditions can be used.

The other conditions showed larger deviations at the

outflow but were still useful. Stretching the mesh at
the outflow introduced oscillations which were reduced

by filtering.
The inflow for the subsonic/supersonic case ex-

hibited an adjustment region until the linea_ growth
rate was achieved even though the linear eigenfunctions

were used for the inflow data. The size of this ad-

justment region was mesh independent. Fox the super-

sonic/supersonic flow, oscillations were observed fur-
ther down the jet and also appeared to be independent
of the mesh. When the r_ (or vorticity) was specified,

the results for the supersonic/subsonic flow agreed bet-

ter with linear theory with a smaller adjustment region.

This may be because specifying r_ gives additional in-

formation about the growth rate. However, because

only derivative information is given, the resultant solu-
tion was less smooth.

For both inflow and outflow there is need to de-

termine whether it is better to impose the boundary
conditions within the sweeps or to impose the boundary

conditions only at the conclusion of an entire time step.
The boundary condition equations may need to be split

to implement within the sweeps. In this study, the one
dimensional characteristics (Thompson) and the R.ie-
mann variable conditions were both better when used

within the sweeps. Both these conditions do not involve

any spatial derivatives.
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